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Flow of a homogeneous inviscid fluid down a rotating channel of slowly varying cross- 
section is considered, with particular reference to conditions under which the flow is 
‘hydraulically controlled ’. This problem is a member of a general class of problems of 
which gas flow through a nozzle and flow over a broad-crested weir are examples 
(Binnie 1949). A general discussion of such problems gives the means for determining 
the position of the control section (which is generally flow dependent) and shows that 
at this position there always exist long-wave disturbances with zero phase speed (i.e. 
disturbances are always ‘critical’ at  the control section). The general theory is applied 
to the rotating-channel problem for the case of uniform potential vorticity. For this 
problem, three parameters are needed to specify the upstream flow, and the control 
theory gives a relationship between these parameters which depends on the geometry 
of the channel. 

1. Introduction 
The deep ocean is naturally divided into a set of basins by the ridges which run 

across it. Often dense water accumulates on one side of a ridge, which acts like a dam. 
The depth to which the dense water can rise is limited because flow will eventually 
take place across a low point in the ridge (the ‘sill’) into the adjoining basin. The 
density distributions in the neighbourhoods of such sills, and the rates of flow, where 
estimates are available, suggest that the level of dense water in the upstream basin and 
the rate of flow from one basin to another may be ‘hydraulically controlled’ by 
mechanisms similar to those which control flows from dams and reservoirs. For 
instance, figure 1 shows a simplified picture of a temperature section across a sill 
(normal to the axis of the ridge) in the Caribbean Sea. The upper boundary of the dense 
water, as shown by the 3.9” isotherm, has a configuration similar to that shown by the 
free surface when water flows out of a reservoir. 

In  flows in the deep ocean, effects of the rotation of the earth are important because 
the scale is large and buoyancy effects are small compared with those for a typical dam. 
This led Whitehead, Leetmaa & Knox (1974) to investigate the hydraulics of a rotating 
fluid by means of laboratory experiment and a simple theory, which proved quite 
effective. However, their theory was restricted to cases where the flow comes from 
a basin which is so deep that the absolute vorticity is effectively zero. The flow up- 
stream of a sill in the deep ocean seems unlikely to have this property, so it was felt 
important to consider a wider class of flows with non-zero potential vorticity. Second, 
the solution with hydraulic control was obtained by using a maximization principle 
applied as an empirical rule which is known to work for non-rotating flows. Therefore 
it was felt that the maximization principle required justification, and so part of this 
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FIGURE 1. The configuration of the 3.9 "C potential-temperature surface in a section across the 
Jungfern Sill (adapted from Stalcup, Metcalf & Johnson 1975, figure 2). The section is roughly 
down the axis of the channel which crosses the ridge separating the Virgin Island Basin in the 
Caribbean from the Venezuelan Basin. The fluid below the 3.9 "C surface is colder (3.7-3.9 "C) and 
denser than the fluid above and flows from left to right in the diagram. The hatched area marks the 
bottom profile. 

paper is addressed to this question in fairly general terms. (Stern (1974) made some 
comments about the maximization principle for the special case of zero absolute 
vorticity, but felt that this criterion would not be applicable to  cases of finite potential 
vorticity.) 

The discussion in this paper is restricted to  a single layer of inviscid fluid of uniform 
density flowing under gravity in a rotating channel of slowly varying cross-section. 
This is, of course, a considerable simplification of the naturally occurring situation, 
but it thought to contain the most important ingredients for an understanding of 
what is observed in many cases. The first part of the paper is concerned with the 
general theory of ' hydraulics ' type problems, and is introduced by a discussion of non- 
rotating channel flow, as this proves to be a convenient way to introduce the concepts 
involved and also some of the notation. Study of flow in a rotating channel begins in $ 4  
and the basic equation relating a flow variable to the geometry of the channel is 
obtained in $5.  

It, is found that three parameters are required to  describe the flow far upstream, where 
the channel is assumed to be very wide but of finite depth. Because of rotation, the 
flow is not distributed evenly over the cross-section, but is confined to boundary layers 
against the two walls (these are called the left bank and the right bank, the observer 
facing downstream towards the sill). The flux in each layer can be specified indepen- 
dently, giving two of the parameters. The third is the fluid depth away from the 
boundary layers, this corresponding to the prescribed potential vorticity. When the 
flow is hydraulically controlled, these three parameters will be related in a way which 
depends on the geometry of the channel. 

The flow studied in this paper is assumed to  vary slowly with downstream distance, 
i.e. changes with downstream distance are assumed to  be significant only over distances 
large compared with the width. This assumption is not satisfied in the experiments of 
Whitehead et al. (1974) because there is a sudden change in depth at the entrance to  the 
channel. Hydraulic control in a rotating system was also considered by Sambuco & 
Whitehead (1976), but there the assumption was that changes with y were rapid 
compared with those with x. 

Aresult of the general hydraulics theory of $ 3  is that  long-waue disturbances always 
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have zero phase speed a t  the control section, i.e. the Froude number is always unity 
there. In  $6,  the phase speed of long-wave disturbances is found for any section, the 
disturbed flow being assumed to have the original value of the potential vorticity. 
Hence a Froude number can be calculated as a function of distance down the channel 
for any solution. 

The solutions for the rotating-channel problem are presented in various forms in 
$88-12. I n  particular, $9  gives the formulae used for computing controlled flow 
solutions, and $10 gives some approximations to these solutions. Apictorial representa- 
tion of some solutions may be found in $ 12. 

2. Non-rotating hydraulics 
The problem to be considered, i.e. steady flow down a rotating channel whose 

cross-section is slowly varying, is a generalization of the same problem for a non- 
rotating system. I n  fact, the non-rotating case can be regarded as the limit of the 
former problem as the rate of rotation tends to zero. To prepare the way for the more 
general problem i t  is useful first to  discuss the concepts of the familiar non-rotating 
case in a manner which makes the generalization to the rotating case fairly straight- 
forward. The discussion also serves to introduce some notation which wiIl be useful 
later. 

Consider the flow of a fluid of uniform density p down a channel of rectangular 
cross-section (figure 2) .  Let the y axis point downstream along the channel axis, let the 
z axis point vertically upwards and let the x axis be chosen such that the co-ordinates 
(2, y, z )  form a right-handed system. Let z = q be the elevation of the free surface and 
z = - h be the level of the bottom of the channel. Then 

D = h + q  (2.1) 

is the depth of fluid in the channel. Let w be the width of the channel, so that the 
sides are a t  x = ? iw, and let g be the acceleration due to gravity. The analysis may 
also be applied to a two-fluid system when the lower layer has depth D and the upper 
layer is very deep. Then z = q is the height of the interface and g is the reduced gravity, 
i.e. gravity reduced by the fractional change in density across the interface. A discus- 
sion of the hydraulics of such a system may be found in Long ( 1  972) and also in a film 
by Long (see National Committee for Fluid Mechanics Films 1972, pp. 136-142, 
MIT Press), 

The channel dimensions h and w and the direction of the channel axis are assumed 
to vary so slowly that the flow in each section is effectively parallel to the y axis and 
has a velocity v which is uniform across the section. Let Q be the volume of fluid 
crossing any section per unit time. Then the flow is governed by two equations: the 
equation of continuity DWV = Q (2.2) 
and Bernoulli’s equation Qv2+gy = gym, (2.3) 
where qm is a constant, equal to the surface elevation where the flow velocity is zero. 
For flow from a large reservoir 

Dw-too as y- t -m (2.4) 

and so, by (2.2), v + O  as y-t-00 (2 .5 )  

and thus q+qm as y-t-00, (2.6) 
22-2  
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FIGURE 2. The co-ordinate system, illustrated by a section down the axis x = 0 of the channel. 
The z axis points vertically upwards and the y axis down the channel in the direction of flow. The 
surface is at z = ~ ( z ,  y) and the channel floor at z = -h ( z ,  y). D = h+ 7 is the depth of fluid. 

i.e. qm is the surface elevation far upstream, relative to the level z = 0. A convenient 
choice for this reference level ( z  = 0) is the highest point in the channel floor. 

A n  alternative form of (2.3) is, by (2.l), 

+v2++D = g(h+qm), (2.7) 

which can be combined with (2.2) to give an equation in a single dependent variable, 
D (or v). The equation for D is 

go+ 4Q2/w2D2 = g(h + q m ) ,  (2.8) 
a cubic equation which can be solved for D given w, h, qm and Q .  If the geometry is 
fixed, i.e. w(y) and h(y)  are fixed, and the flow rate Q is specified, there is aone-parameter 
family of solutions corresponding to different possible upstream levels qm. 

A convenient form of solution is one in terms of the non-dimensional quantities 

D* = (gw2/Q2)* D ,  h* = (gw2/Q2)* (h  +qm), (2.9) 

(2.10) 

whose graph is shown in figure 3. For a given value of the independent variable h* there 
are two possible values of the dependent variable D* when h* > +, no possible values 
when h* < + and a single possible value D* = 1 when h* = 3. The two branches of the 
curve are marked A B  and BC in the figure and B marks the point h* = 5, D* = 1 ,  
where the two branches meet. 

Consider a geometry in which h* is large at points far upstream, in conformity with 
(2.4), then reduces to a minimum value 

which, by (2.8), satisfy the cubic equation 

h* = D* + LD*-2, 2 

hz = min h* (2.1 1) 

at a certain point, which can be chosen as the origin y = 0 of the y axis, and finally 
increases again. By (2.9), the minimum can be due to a minimum in depth, a minimum 
in width or a combination of the two. When the width and depth both vary, the position 
of the special point y = 0 (sometimes called the control point) is uniquely defined by 
(2.11). Note that hz  depends on the upstream level qm and so can be regarded as a non- 
dimensional parameter which measures the upstream level. 
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FIGURE 3. The relationship between the flow variable D*, which is a measure of water depth, and 
the geometric parameter h*, which depends on the width, flow rate, and depth relative to the 
upstream level. This is sometimes called the specific energy curve or specific head curve. The curve 
has two branches, which meet at the point B, where D* = 1 ,  h* = 3. 

The way in which D*, which measures the water depth, varies with y can be deduced 
from figure 3. The point y = -a corresponds to the point A at infinity along the 
branch for which 

D* w h* as h*+m.  (2.12) 

As y increases, h* decreases and so the solution follows the curve in the direction of the 
arrow until the point P ,  where h* = h: is reached. A further increase in y corresponds 
to an increase in h*, so the solution retruces the curve back towards A ,  and remains on 
the branch AB. 

For large r,, h; is large. As roo is reduced, h; reduces and so the point P eventually 
coincides with B, the turning point of the cubic, where 

h$ = Q .  (2.13) 

This is a special case, because when y increases beyond zero the solution could follow 
either branch as h* increases, i.e. towards A or towards C. For smaller values of q,, 
hz is less than 9, so the point B is reached a t  a negative value of y and no solution 
exists for values of y beyond this point. 
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FIGURE 4. (a )  The family of channel-flow solutions given by the theory for a channel of slowly 
varying cross-section. For channels of constant width, the hatched region represents the bottom 
and the solid lines configurations of the free surface. The broken line corresponds to a water depth 
D* = 1 .  On this line the surface slope is infinite, contrary to the assumptions of the theory, 
except for the curves h: = 3. The solutions are symmetric about the centre-line. (b)  The curves 
shown in (a) which contravene the assumptions of slowly varying flow must be modified by allowing 
for a rapid jump in level, i.e. a hydraulic jump. The position of the jump is determined by the 
requirement of no change in momentum flux and a loss (rather than a gain) of energy across the 
jump. The above shows the result obtained when flow is from left to right. 
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The situation may be seen more clearly in figure 4(a), which shows the family of 

h* = h z  +y2, (2.14) 

but this represents no real loss of generality because y enters the solution only para- 
metrically. Thus solutions for other profiles h*(y)  are obtained merely by suitable 
stretching of the y axis. The ordinate 5 is defined by 

5 = h z  + D* - h* = hz + (gw2/Q2)4 (7 - qm), (2.15) 

and so measures the surface elevation. In  the particular case where the channel has 
constant width, figure 4 (a )  represents a section along the axis of the channel and the 
hatched region denotes the floor of the channel. 

From (2.14) and (2.15), the surface elevation 6 and water depth D* are related by 

5 = D* - 9 2 .  (2.16) 

Elimination of D* and h* from (2.16), (2.14) and (2.10) then gives the equation for the 
surfaces shown in figure 4 (a) ,  namely 

possible solutions for a given geometry. The graph is drawn for the particular case 

5 + &(E + y2)-2 = h* m.  (2.17) 

The point B, where the two branches of the cubic meet, is given by D* = 1 and is 
shown by a broken line in figure 4(a). Curves with hg > Q lie entirely above this line 
since they correspond to points on the branch A B  of the cubic. Now the surface slope, 
from (2.16) and (2.17), isgiven by 

d5 1 dh* 
d y  D*3- 1 d y  ’ 
- = -- (2.18) 

and so is infinite on the broken line D* = 1 except at the point y = 0, where dh*/dy 
vanishes. At this point, the ratio on the right-hand side of (2.18) is replaced by the ratio 
of the derivatives, yielding [with the aid of (Z.l6)] 

(dg/dy)2 = fd2h*/dy2, (2.19) 

so there are two possible slopes, as shown in the figure. There is only one curve (marked 
h;21 = Q) which satisfies the upstream condition and crosses the line D* = 1 without 
an infinite surface slope. It is the only solution with a smooth transition from one 
branch of the cubic in figure 3 to the other. In  other words, it  is the only slowly varying 
flow for which the solution at  a given h* downstream ( y  > 0) of the minimum differs 
from the solution at  the same h* upstream ( y  < 0) of the point where h* is a minimum. 

Now consider the physical problem of flow from a large reservoir to which fluid is 
supplied at a uniform rate Q. What will be the surface level in the reservoir? The curve 
in figure 4(a) which is selected depends in practice on conditions applied at some 
downstream point, which effectively sets a surface level at  some large value of y .  Since 

E+hz as y+oo (2.20) 

h; assumes the value which < has far downstream. If this value is large figure 4(a) 
shows that the surface is almost flat, save for a slight depression centred on the 
constriction at  y = 0. As the downstream level (and hence h:) is lowered the depression 
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deepens and the curvature of the surface a t  y = 0 increases, tending to infinitjy as 
h; 1 Q .  Up to this point, the surface level in the reservoir assumes the same value aa 
is set downstream. But what happens when the downstream level is further reduced? 
If the downstream level is very low, e.g. on the lower curve hz  = Q ,  then the appropriate 
curve is h z  = Q with the high level on the left, a smooth transition through y = 0 and 
low levels on the right. This suggests that the left-hand upper curve h z  = Q represents 
the lowest possible level in the reservoir, being obtained with a downstream level 
corresponding to either of the right-hand curves hz  = Q .  One might guess that the 
curve on the left is also the same for all downstream levels in between, but solution of 
the problem for such cases requires further consideration. 

For such downstream levels, the curve in figure 4 (a )  can be traced upstream (from 
y = +a) a certain distance, but the surface gradient eventually becomes very large 
and the assumption of slow variation with y breaks down. Hence there must be some 
relatively rapid transition, which in practice is called a hydraulic jump and takes on 
a form which is well known from observation. Here there is a loss of energy, propor- 
tional to the difference between the upstream value ?j of hz  and the downstream value 
of hz determined by the downstream level. The jump is not positioned a t  the point of 
infinite gradient, because the momentum$ux (including the pressure term) at  the jump 
must be continuous. Since this flux is given by 

ggwD2 + V ~ D W  = (gQ4/w)* (&D*' + D*-l) (2.21) 

the value of M = &D*2 + D"-1 (2 .22 )  

must be the same on either side of the jump. M has a minimum value of Q on the 
broken line D* = 1 in figure 4 (a)  and increases on either side. Figure 4 ( b )  shows the 
solutions which are consistent with the upstream reservoir condition, the downstream 
level condition and, where necessary, a single jump with M continuous and an energy 
loss. (It would be possible to have a jump upstream of the constriction with M con- 
tinuous, but then energy would need to be supplied at the jump so this solution is 
rejected. ) 

Whenever the downstream level is below the upper h; = 3 curve the upstream level 
is invariably given by h: = Q .  In  such cases, the upstream level is said to be controlled 
by the constriction a t  y = 0 and the section y = 0 is called the control section. In 
engineering practice, the control section is a spillway or weir, and equipment is 
installed so that the geometry of the control section may be altered when it is desired 
to change the upstream level. In natural flows, e.g. when a river descends through 
a series of rapids, there will be a control section where h, has the smallest value, then 
another where h, has the next smallest value downstream and so on, thus determining 
the position of each rapid. 

Another aspect of hydraulics theory concerns the behaviour of long-wave dis- 
turbances. These disturbances have wavelengths long enough for the flow at each 
section to be considered uniform and parallel to the axis, yet short enough so that 
changes in the dimensions of the channel over a wavelength can be ignored. At each 
section, there are two possible values of the phase speed c of the disturbances, given by 

c = w ~f: (gD)*. (2.23) 
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The ratio of the flow velocity v to the disturbance speed Jc - vI relative to the flow is 
called the Froude number F ,  and is given by 

F = v / ~ c - v ~  = v/(gD)t  = D*-*. (2.24) 

Thus for D* > 1 (i.e. on the branch A B  of the curve in figure 3), long-wave 
disturbances can travel both upstream and downstream, and the flow is said to be 
subcritical (i.e. F < 1). For D* < 1 (i.e. on the branch BC of the curve in figure 3), 
long-wave disturbances can travel only in the downstream direction, and the flow 
is said to be supercritical (i.e. F > I ) .  When F = 1 the flow is said to be critical, and 
points where this occurs are called critical points. Since this occurs when D* = 1, the 
control point is also a critical point, i.e. the change of branch of the curve in figure 3 
occurs exactly a t  the point where F = 1, i.e. where there are long-wave disturbances 
which propagate neither upstream nor downstream (c = 0). In the next section, it 
will be shown that this is a general property of a wide class of flows. 

The upper curves in figure 4 (b) ,  which are symmetrical about y = 0, correspond to 
flow which is everywhere subcritical, so disturbances can carry information both 
upstream and downstream. For the remaining curves, the flow is subcritical upstream 
of the constriction, supercritical between the constriction and the hydraulic jump, 
and subcritical downstream of the jump. Thus, if any change is made at  the constric- 
tion by altering the geometry, long waves can carry the information upstream. On the 
other hand, disturbances created a t  the hydraulic jump cannot propagate upstream 
because the flow is supercritical there. 

3. General theory of ‘hydraulics’ type problems 
There is a whole class of problems which have essentially the same character as the 

hydraulics problem considered in the last section. A list of such problems has been 
compiled by Binnie (1949) together with a discussion of their treatment and their 
history. The first problem in this class to be studied was that of gas flow through 
a nozzle (Hugoniot 1886; Reynolds 1886). The purpose of this section is to express 
these problems in a common form, and to show that stationary long-wave disturbances 
inevitably occur a t  the control point, i.e. that, the flow is ‘critical ’ there. In addition the 
arguments will be made more general than usual by considering a wider class of 
geometrical configurations. 

A common feature of the problems to be considered is that a geometry is specified 
which involves a channel or tube with some sort of constriction. The arguments are not 
always applied to a channel or tube with solid boundaries, but sometimes to a stream 
tube within a larger flow. The dimensions of the tube or channel are supposed to vary 
slowly with downstream distance, so that the flow is approximately parallel to the 
sides. The flows considered are steady. Usually the flow is assumed to depend only on 
one geometrical property such as the cross-sectional area, but this is an unnecessary 
restriction. Instead it will be assumed that the geometry is given by a set of parameters 
h, w, ..., which could represent, for instance, the height h of a channel floor, the 
channel width w, etc. These parameters vary slowly with downstream distance y. 
There appear to be three essential features. 

(i) The flow can be specified in terms of a single dependent variable D whose 
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dependence on y is ent,irely implicit in terms of the geomet.ric parameters h, w, ...; 
that is 

$(h, uy, ... ; D )  = constant. 

(ii) The function $ is micltiple-valzied in that for some range of values of h, w, ... 
there is more than one value of D. The surface $ = constant is also assumed to  be 
smooth. 

(iii) The geometry involves some sort of ‘constriction‘ in the sense that 

+ ... = 0 
a$dh 8 j d w  g=--+-- 
iih d y  iiw dy 

at some point. 
Assumption (i) in practice results from the slow variation of the geometry with y. 

In  the non-rotating case, the function 2 is given by the cubic (2.10). Assumption (ii) 
results from the nonlinear character of the equations of motion and assumption (iii) is 
an essential feature of the geometry. When only one parameter h is needed, this third 
assumption reduces to the requirement that dhldy vanishes a t  some point. 

Now consider what deductions can be made for problems which satisfy the above 
three criteria. The first deduction is concerned with the conditions which determine 
the position of the control section. The discussion of non-rotating flow in a channel 
shows that such a point occurs where there is a smooth transition from one branch 
of the curve $ to the other. Where D depends on more than one geometrical parameter, 
# is a surface in D, h, w, . . . space so we are concerned with a transition from one sheet 
of the surface to another. The line along which the separate sheets of the surface meet 
is given by a$/aD = 0. (3.3) 

The argument which determines the position of the control section was first used by 
Hugoniot (1886) in connexion with gas flow through a nozzle. Differentiation of (3.1) 

= -3,  
8 y d D  
8D d y  

with respect to y gives 
-- (3.4) 

so dDldy is infinite and the solution breaks down where (3.3) is satisfied, unless 59 = 0 
at, this point. Thus t’he control section is situated where (3.1)-(3.3) are all satisfied. At 
such a point, further differentiation of (3.4) gives 

as 
(3.5) 

so it’ is essential also that a2y/aD2 and have opposite signs a t  this point. This 
condit’ion distinguishes, in effect, a ‘constriction’ from an ‘expansion’. I n  the case of 
non-rot,ating channel flow, (3.4) becomes (2.18) and (3.5) becomes (2.19). Note that 
when there is only one parameter h, the position of the control is given by (3.2), which 
becomes dhldy = 0, and (3.3) determines the character of the flow a t  this point. The 
same is true if dhldy, dwfdy,  . . . vanish at the same point. I n  general, however, dh/dy, 
dwldy . . . vanish a t  different points, and the control section must presumably lie a t  
some point in between. Equation (3.2) determines where this point is, and shows that 
its position depends on the flow, 

The other deduction which can be made is concerned with long-wave dist,urbances 
to the flow. Such disturbances have zero phase speed, i.e. are stat>ionary, when (3.1) is 
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satisfied not only for the mean flow D but for the slightly disturbed flow D+6D. 
Therefore 

y ( h , w ,  ...; D+6D) = 0 

holds in addibion to (3.1) and so (3.3) follows. Therefore stationary long-wave dis- 
turbances always exist a t  the control section. This explains why the Froude number 
is unity a t  this point in the non-rotating hydraulics problem, and why the Mach 
number is unity a t  t'he nozzle for gas flow. 

4. Equations for flow in a rotating channel 
Consider flow under gravity in a channel which rotates about the vertical z axis 

with uniform angular velocity 3 f. Co-ordinate axes fixed in the rotating frame will be 
used, with the same notation as in 92 (see figure 2). An important effect introduced by 
rotation is that the free surface slopes across the channel, so flow variables now 
depend on the cross-stream co-ordinate x as well as the downstream co-ordinate y. 
To begin with, the depth h of the channel floor below the co-ordinate plane z = 0 will 
also be allowed to depend on x ,  although detailed solutions will be calculated only for 
the case where h is independent of x. 

If u and v are the velocity components in the x and y directions respectively, con- 
tinuity implies the existence of a stream function II. such that 

DU = -a$/ay, DV = a$/ax. (4.1 a, b )  

The velocity can be regarded as independent of depth since the horizontal scale is 
assumed to be large compared with t,he depth. The quantity D(x,  y )  is the fluid depth 
defined by (2.11, and also in figure 2 .  The dynamic equations may be written in the 
form 

- (f+ 6) = - mpx, (4.2) 

(f + 6 ) u  = -aB/ay, 

where 5 = awlax - au/ay (4.3) 

B = g q  + 4(u2 + v') (4.4) 

is the vorticity relative to the rotating frame and 

is the Bernoulli function. Equations (4.1) and (4.2) together imply that 

B = & $ I ,  (4.5) 

i.e. B is constant along streamlines. Equation (4.2) further implies that  the potential 
vorticity (absolute vorticity divided by fluid depth) is given by 

( f  + 6) /D = dBld$-, (4.6) 

and so must also be coqstant along streamlines. 
Now it is assumed that variations with downstream distance are on a scale large 

comparetl with the width of the channel, so that u < v and au/ay 4 &/ax. Thus (4.4) 
and (4.6) simplify to  

gv + :v2 = a$) (4.7) 

and f + av/& = D dB/d$  (4.8) 
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respectively. In addition the x derivative of (4.7) together with (4.8) and (4.1 b )  implies 
the geos trophic balance 

between the Coriolis acceleration and the cross-stream pressure gradient. 
Equations (4.7)-(4.9) are difficult to handle in general because of their nonlinear 

form, but in the special case where the potential vorticity is uniform a linear equation 
is obtained. The rest of the paper is restricted to this special case, for which (4.8) 

(4.9) jv = galllax 

becomes 
(4.10) 

where Dm is a constant. Dm may be interpreted as the fluid depth a t  points where the 
relative vorticity y is zero. Alternatively, f/Dm is the given value of the potential 
vorticity, which may be regarded as a value associated with upstream conditions. 
Now the Bernoulli equation (4.7) becomes 

97 + $v2 = ( f / D m )  4 + g y m ,  (4.11) 

where is the surface elevation on the streamline 4 = 0 at points where the current v 
is zero. The stream function @ will be defined such that 

4=+QQ on x = t $ w ,  (4.12) 

The four governing equations (4.9)-(4.12) can be divided into two subsets. The 
i.e. the streamline 4 = 0 has half the flow on either side. 

first subset, comprising (4.9) and (4. lo),  gives a second-order equation, namely 

(4.13) 

which determines the cross-sectional profiles of water depth and velocity. The width 

(4.14) scale 

which appears in this equation is the Rossby radius of deformation based on the 
upstream potential vorticity f/Do3, i.e. on the depth 0,. When (4.13) is solved, the 
Bernoulli equation (4.11) can be applied a t  the two boundaries to give an equation of 
the form (3.1) relating flow characteristics to geometry. 

The non-dimensional system of variables to be used will be based on the width scale 
w, defined by (4.14), a velocity scale v, and a depth scale 0,. us and 0, are chosen to 

(4.15) satisfy 

the first relationship being based on continuity and the second on the geostrophic 
balance. Thus 0, and us are given by 

0, = ($fQ/g) ' ,  8, = (ifQ/Dm)'* (4.16) 

ws = 2(9Dm)$lf 

DSwsv, = Q ,  Qfv, = gO,/ws, 

Non-dimensional variables are defined by 

and the non-dimensional parameter which enters the problem will be denoted by 

or by 

(4.18) 

(4.19) 
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The parameter Q* can be regarded as the ratio of the actual flow rate Q to a flow 
rate based on a depth scale D,, a width scale equal to the Rossby radius based on D, 
and a velocity scale (gD,)t based on 0,. 

With these definitions, (4.9)-(4.13) become 

(4.20) 

(4.21) 

(4.22) 

(4.23) 

(4.24) 

5. The equation relating the flow to the geometry 
The equations derived above will now be solved to give the profiles of surface 

elevation and velocity a t  any given section y = constant. These profiles depend on 
a single flow variable D, and so an equation of the form (3.1) can be found which 
relates D to the parameters which define the geometry of the section. This equation 
will then be put in a form [cf. (2.17)] which explicitly gives the dependence on the 
parameters which specify the upstream flow. 

Non-dimensional quantities will be used, but circumflexes will be dropped for the 
variables (4.17) from this point onwards [but will be retainedfor the parameter (4.18)]. 
For simplicity, attention will be restricted to the case of a channel of rectangular 
cross-section, i.e. one for which ahlax = 0. The geometry is therefore specified by h 
and w, both of which vary with y in some prescribed way. 

In discussing flow variables, a suffix ' + ' will denote the value on the right bank 
(facing downstream, towards y = co), i.e. at  x = + +w, and the suffix ' - ' will denote the 
value on the left bank x = - &w. A n  overbar will denote the average of the values a t  
the two sides, and S before a variable will denote half the a-fference between its values .~ 

at the sides. Thus D = &(D+ + D-), SD = $(D+ - D-) 15.1) 

and similarly for v. Using this notation, the solution of (4.24) can be written in the form 

cosh 2x sinh 22 
cosh w sinh w ' 

D - B m  = (D-Q- +SD- 

It follows from (4.20) that v is given by 

sinh 2x cosh 2x 
cosh w sinh w ' 

v = (D-B,)- +SD- 

Calculating V and Sv from this equation gives 

tG = SD, 6~ = t(E - 6,) 
where t = tanhui. 

(5.3) 
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Equations (5.4) and (5 .5 )  can be regarded as integrated forms of i4.20) and (4*2L1 
respectively. 

So far, the two variables D and SD are needed to determine the profiles (5.2) and (5.3). 
However, two more equations can be obtained by applying the Bernoulli equation 
(4.22) at the two walls. The difference between these two equations, after (5.4) and 
(5.5) have been used to express the result in terms of D and SD, gives 

DSD = I ,  (5.7) 

so the single variable D is sufficient to determine the profiles. The sum of the two 
Bernoulli equations, when (5.4), (5 .5 )  and (5.7) have been used to  express this in terms 
of D ,  gives the quartic equation 

2Bffi(D - h) + (tD)-2 + P(D - Bffi)2 = 0. (5 .8 )  

This has the required form (3.1) and reduces to the cubic equation (2.10) for the 
non-rotating case in the limit as f --f 0, other dimensional variables being kept fixed. 

Now consider the upstream conditions. In the non-rotating case, it was sufficient 
to require that the cross-sectional area Dw-tco as y+ co without specifying whether 
D, w or both tend to infinity. In  the rotating case, such a general condition is no 
longer appropriate. In  fact, the usual idea behind the assumption of constant potential 
vorticity is that the fluid comes from a source region of constant depthB,where the 
relative vorticity is zero. Therefore, in the rotating case it will be assumed that the 
width w (but not the depth) tends to infinity far upstream, i.e. t +  1 as y+ - 00. In 
this limit, the flow has a boundary-layer character, the widths of the layers being the 
Rossby radius. Outside these layers, the flow is quiescent and the solution of (4.20) 
and (4.21) is simply 

In the boundary layers, on the other hand, the solution of (4.24) is 

v = 0, D = Bm. (5.9) 

D =Bffi+(D*-B,)exp(f2x-w). (5.10) 

Three dimensional quantities are needed to specify this upstream flow, a suitable 
set being (a)  the upstream potential vorticity, given by the depth Dffi, ( b )  the flux in 
the right-hand boundary layer and (c) the flux in the left-hand boundary layer. These 
determine twonon-dimensional quantities, a convenient pair being B,  (which depends 
on D, and the total flux Q )  and ?pi, which is defined as the value of the non-dimensional 
stream function @ in the interior portion of the channel, i.e. away from the two 
boundary layers. The ratio of the left-bank flux to the right-bank flux is then 

by (4.23). 
All properties of the upstream flow are determined by these two parameters (which 

are distinguished by the circumflex). In particular, the upstream value h, of h is 
obtained from the Bernoulli equation (4.22) applied in the interior, which gives 

&+?pi: *-?pi 

Bffi - h, = 28;' ?pi. (5.11) 

The upstream level of the channel floor provides a convenient reference level for the 
floor level at other points. Defining A(y) as the height of the channel floor above this 
level, h is given by 

h = h, , -A.  (5.12) 
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Substituting for h in (5.8) and using (5.11) gives the required equation, namely 

4 g t  + 2BJ A + B - Bm) + ( tB)-2 + t2(B - Bm)’ = 0. (5.13) 

as a function of the two geometric variables A and t and This gives the flow variable 
of the two upstream parameters Bm and gi. 

6. Long-wave disturbances 
Before calculating solutions of (5.13), the properties of long-wave disturbances will 

be briefly considered so that distinctions can be made between ‘subcritical’ and ‘super- 
critical’ flows. Perturbation quantities will be denoted by a prime. The y scale of the 
disturbances is assumed to be large compared with the cross-stream scale, yet small 
compared with the scale on which the geometry is changing. The potential vorticity 
of the disturbed flow is assumed to be the same as for the undisturbed flow, so the 
disturbance equation which takes the place of (4.10) or (4.21) is 

gavf/ax = D’. (6.1) 

v’ = pD’/ax. (6.2) 

In  addition, the geostrophic relation [cf. (4.20)] gives 

Combining these gives a hyperbolic equation like (4.24) and the method of $ 5  gives 
in place of (6.4) and (5 .5 )  the results 

t5’ = 6D’, SV’ = tD, (6.31, (6.4) 

where t is defined by (5.6) as before. 
The Bernoulli equation does not apply to the disturbance. Instead, the downstream 

component of the momentum equation is applied at  the two side walls. Since the cross- 
stream component of velocity vanishes on the walls, this gives 

For travelling-wave solutions a/at = - c a/ay, where c is the wave speed, so (6.5) gives 

B,D;+(V*-CC)V; = 0. (6.6) 

B 8Df + P - l  B’ SD = 0, 

The difference between these two equations gives, in place of (5.7), 

(6.7) 

F = V / ( V - c ) .  (6.8) 

where the Froude number F is defined by 

Finally, the sum of the two equations (6.6) gives the required expression for F ,  namely 

F-2 = D3t2[(1  - t2 )Bm+t2D) .  (6.9) 

The flow will be called subcritical when F < 1 and supexcritical when F > 1.  
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7. Separation of the stream from the left bank 
Before discussing solutions of (5.13), it is necessary to determine the range of values 

of the flow variable B for which the equation is applicable. In the non-rotating case 
the fluid depth was independent of x, so the only requirement was for the variable D* 
to be non-negative. In  the rotating case a condition on must be found which ensures 
that the fluid depth is non-negative across the whole section. A necessary condition 
for this to be true is that the fluid depth 

D * = D & + D = D & I / B  (7.1) 

B 2  1. (7.2) 

at the two side walls is non-negative, i.e. 

This condition is also sufficient, for if (7.2) holds D is non-negative at the two walls. 
For D to be negative a t  an interior point, therefore, there would have to be a minimum 
value at  which D was negative. But at  a minimum a2D/ax2 is positive, and so, by 
(4.24), D > 8, > 0,  contrary to the requirement. This completes the proof. 

Now consider what happens to the stream when it reaches a point where D = 1. 
Here the depth D- on the left bank is zero, by (7.1),  so the stream separates from the 
left bank at  this point. Beyond the point of separation, the stream occupies only part 
of the channel and so has an effective width w, < w. In other words, the stream will be 
found only in the region 

and the channel floor in the remainder of the channel will be dry. Beyond the point of 
separation, a new equation is required to replace (5.13). This equation is easily found 
by applying (5.13) only to the part of the channel occupied by the stream. Then = 1 
and t is replaced by t,, where 

;w-we < x < gw 

(7.3) 

(7.4) 

te = tanh we. 

This gives 4$d + 2B,(A + 1 -8-) + tL2 + tz( 1 -Boo)' = 0. 

It can also be shown that the Froude number is given by 

P-2 = tZ[( 1 - t,") 8, + tE], (7.5) 

i.e. the formula obtained by putting 
Thus the equation relating flow properties to geometry is (5.13) when (7.2) is 

satisfied, but is replaced by (7.4) when (7.2) is not satisfied. The need for a different 
equation is purely a matter of description. Equation (5.13) is meaningful when the 
water surface intersects the side wall of the channel but must be replaced by (7.4) 
when the surface intersects the bottom. If the cross-section of the channel were not 
rectangular but, say, parabolic, the distinction between the 'side' and 'bottom' of 
the channel would not exist and so two different equations would not be necessary. 

The separation of the stream from the bank occurs on the left side when the Coriolis 
parameter f is positive. The results for f < 0 can be obtained from those above merely 
by reversing the direction of the x axis (giving a left-handed co-ordinate system) but 
keeping D and u the same. Thus separation is from the right bank (facing downstream) 
when,f is negative. 

= 1 and t = t, in (6.9). 
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Note that ‘downstream ’ refers to the direction of the total flux. It is possible that the 
flow in some parts of the channel may be in the opposite direction to the integrated 
flow. A useful indicator of how much v varies across the channel is the parameter 

(7.6) 

Anecessary condition for v to be non-negative everywhere is that the values v& = V k 6v 
a t  the two walls be non-negative, i.e. that  

r = S V ~ G  = t2B(D-Bm). 

Irl < 1.  (7.7) 

It can also be shown that this condition is suscient. [The method is the same as that 
used for proving the sufficiency of (7.2).] When r = 1,  v- = 0 so there is a stagnation 
point on the left bank, and when r > 1 there is reverse flow adjacent to the left bank. 
On the other hand, r = - 1 implies v+ = 0, i.e. a stagnation point on the right bank, 
and r < - 1 means that reverse flow occurs in the vicinity of the right bank. 

8. Dependence of the flow variable on geometry 
The behaviour of the flow in the non-rotating case was discussed in terms of the cubic 

(2.10) (see figure 3),  which relates the flow variable D* to the geometrical variable h*. 
From the discussion in 3 3, the essential property of this curve which allows hydraulic 
control is the existence of two branches. Now consider the corresponding curves for 
the rotating case. For a given geometry, A(y )  and t ( y )  will be specified so there will be 
a specified relation between A and t .  Substituting in (5.13), a curve relating to t 
(or A) can be obtained for given values Bm and pi of the upstream parameters. 

Figure 5 shows examples of such curves for the case of a flat-bottomed channel 
( A  = 0) of variable width when pi = +, i.e. when the upstream flux is entirely within 
the left-hand boundary layer. The curves were obtained by solving (5.13) for B ,  and 
plotting contours of Bm in the b, t plane. All the curves have two branches. The flow 
obtained for different upstream levels can be discussed in the same way as for the 
non-rotating case ($2) .  Suppose, for instance, that the minimum width of the channel 
is given by t = 0.7 (w M 0.9). When the upstream leveI is high (look at the curves for 
b, = 4 and 3), decreases very slightly from its upstream value (i.e. the value a t  
t = 1 )  to its value a t  the constriction (t = 0.7). Downstream of the constriction, 
t increases again and the only continuous solution is the one obtained by retracing the 
same curve back towards t = 1.  

between the upstream value and thevalue 
at  the constriction increases until eventually a curve (Bm M 2.1) is reached which has 
a branch point a t  t = 0.7. For this ‘critical ’ value of Bm, a change of branch is possible 
at  the constriction. If this occurs, continues to decrease downstream of the constric- 
tion even though t is increasing. However figure 5 shows that decreases to unity 
before t has increased very much, so separation from the left bank will take place 
when the width reaches the corresponding value. Downstream of this point, the effec- 
tive width of the stream remains constant. 

Figure 6 shows another case where pi = &, but for which the height A of the channel 
floor varies. Imagine a channel which for y < yb has A = 0 and a width gradually 
contracting to the value w = 0.75 (t  = 0.63, t 2  = 0.4) a t  y = yb. For this part of the 
channel, figure 5 is appropriate. Figure 6 refers to the remainder of the channel 

For smaller values of Bm, the decrease in 
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t 

FIGURE 5 .  Examples of curves relating the flow variable D to the geometric parameter t (cf. 
cgure 3),  which is the hyperbolic tangent of the width. The channel floor in this case is flat, and 
$l = i, i.e. the upstream flow is all in a boundary layer on the left-hand wall, facing downstream. 
Solutions are meaningful only for > 1, since the flow separates from the left-hand wall at the 
point where D = 1 .  Downstream of this point D remains equal20 1 and the width of the region 
occupied by fluid remains constant. Curves for other values of $l for the flat-bottomed case also 
have a double-branched structure. The broken line is the locus of turning points where the two 
branches meet. 

(y > yb), where the width is fixed (w = 0.75) but A varies. The upper part of the 
figure shows how D varies with A in the permissible range 2 1 .  (This was drawn 
simply by solving (5.13) for A given D ,  Brn and t . )  At y = yb ,  A = 0 and D > 1, so the 
curve Brn = constant is entered on the upper left-hand border of figure 6. As y increases 
A increaees, so the contour is followed to the right. Since separation occurs if the 
point D = 1 is reached, a curve showing dependence of the effective width we on A is 
required beyond this point. The lower panel of figure 6 shows such curves, t ,  = tanh we 
being shown as a function of A (the curves were obtained by solving (7.4) for A given 
t ,  and BE). If hoth parts of the figure are taken together, theneachcurve of constant 6, 
has two branches and hydraulic control is possible. 

Consider examples where A increases from zero (at y = y h )  to a maximum value and 
then decreases to  zero again. The line of maximum elevation of the channel floor will 
be called the sill, and the corresponding value of A the sill height. For low sills 
(maxb < 1.5), the separation point is in the subcritical region (above the broken line 
in figure 6) so separation (and subsequent reattachment) can occur even when there 
is no hydraulic control. Suppose, for instance, that the sill height is given by A = 3, 
and consider a decreasing sequence of values of the upstream level Bm. When Bm > 5.1 
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FIGURE 6. Dependence of flow properties on geometry for a channel of uniform width w = 0.75 
( t  = 0-63); The geometrical parameter which varies is A, the height of the channel floor. As in 
figure 5 ,  $i = 4, i.e. the upstream flow is all in the left-hand boundary layer. When the flow is not 
separated, the flow variable is B. The u,pper part of the figure shows curves relating and A for 
different values of the upstream level D,. The line = 1 marks where separation occurs. When 
the flow is separated, the flow variable is t , ,  the hyperbolic tangent of the effective width. The 
lower part of the figure shows the relation between t ,  and A. The broken line is the locus of points 
where a change of branch occurs. Above this line the flow is subcritical, below it is supercritical. 

(the value for which A = 3 when = I ) ,  there is no separation and no change of 
branch. When 5.0 < fjm < 5-1, separation will occur for a small range of heights A 
near that of the sill, but there will be no transition. The criticalvalue of am is 5 .  When 
f j c o  = 5 ,  separation occurs a t  the point where A = 2-9, but the flow is still subcritical 
until the sill (A = 3) is reached. Here the effective width is given by t, = 0.5 and the 
flow becomes supercritical. Figure 6 then shows that, as A decreases again, t, continues 
to  decrease, eventually reaching a value of 0.16 when A = 0. 

The way in which figure 6 changes as t increases is rather interesting. The lower part 
of the figure is unchanged, but the range of relevant values of t, increases. I n  other 
words, the lower panel extends further upwards. The value of A for which separation 
occurs at the sill decreases, the limiting value being zero when t = 1. As t changes, the 
curves in the upper panel change their shape. I n  particular, all contours of fjm become 
close to vertical a t  the point where = 1 , indicating that proximity to  transition does 
not occur a t  this point. Instead, the Froude number, which is only slightly less than 
unity a t  the separation point, decreases again [see (7.5)] to a minimum value of 
2Bz1(fjm - 1)1 at the point where 2t: = Bm(Bm - l)-l, then increases again, passing 
through unity a t  the point where tz = (fjm - 1)-l. 
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9. Controlled flow solutions 
Curves like those shown in figures 5 and 6, which relate a flow variable to geometry, 

can be used to find solutions for all slowly varying flows, whether there is hydraulic 
control or not. From now on, however, attention will be restricted to the subset of 
these solutions for which the flow is controlled. The subscript c will be used to denote 
values a t  the control section, so A,, for example, denotes the height of the channel 
floor a t  this point. Supposing that qi is given, the problem is to find the value of the 
upstream parameter B ,  for given geometry a t  the control section, i.e. for givenvalues 
of Ac and t,. The equation which determines the position of the control section is (3.3). 
This takes different forms depending on whether or not the flow a t  the control section 
is separated from the left bank, so the two cases will be considered individually. 

Separated Pow at the control section 

The algebra is easier in this case, so it will be treated first. The relevant equation 
relating the flow variable t ,  to the geometry is (7.4). When (3.3) is applied, the result 
which corresponds to a positive value of Bm is 

Bm = 1 +t ,2 ,  (9.1) 

where t, = tanh we, and we, is the effective width a t  the control section. The condition 
for this equation to be applicable is that  we, is less than the actual width w, a t  this 
section, i.e. t,, < t, and S O ,  by (9.1), 

B,  > 1 +t,2. (9.2) 

Before going further, there is an interesting consequence of (9.1). Substituting for 
B,  in (7 .6 )  and putting = 1, it follows that r = - 1, i.e. there is a stagnationpoint 
on the right bank. In  fact, substitution in (5.2) and (6.3) gives for the profiles at the 
control section 2[cosh 2wec - cosh (w, - 2x)] 

D =  9 (9.3) Gosh 2w, - 1 

sinh (w, - 22)  
V =  

sinh2 wee ' 
(9.4) 

Thus the fluid depth D is 2 a t  the right bank, where the surface is horizontal 
(aD/ax = 0). The depth decreases monotonically with distance from the right bank, 
becoming zero when this distance equals wec. The velocity v is positive across the 
whole section, and increases monotonically from zero a t  the right bank to a maximum 
value of (sinh 

The way in which 6, depends on the geometry is found by eliminating the flow 
variable t,, between (9.1) and ( 7 . 4 ) .  This gives 

a t  the point where the depth vanishes. 

Solutions are shown in the upper part of figure 7 .  Note that the only dependence on t,  
is through the requirement that (9.2) be satisfied. This implies that for a very wide 
channel (9.5) is applicable only in the range 6, > 2 while for channels of finite width 
bhe cut-off value of Bm is even larger. 
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FIGURE 7. The solid curves show the relation between the upstream level 8, and the s i l l p g h t  A, 
for contr$led flow in the wide-channel limit (tc + 1). Each curve is for a fixed value of ~ i .  Above 
the line D, = 2, flow at the control section is separated. To the upper left of the broken line, it is 
also separated at  upstream infinity (but not so in the rest-of the diagram). The effective width 
we, of the stream at the control secti2n depends only on D, [equation (9.1)]. Values of we, are 
indicated on the right. Below the line D, = 2, the flow at the control section is not separated. The 
point marked (e) corresponds approximately to the case Pepicted in figure 9(e) where t = 0.9. 
When t ,  is finite, the part of the diagram above the line D ,  = 1 +t,* is unchanged because the 
flow at the control section is still separated in those circumstances, and so the relationships are 
unaltered by a change of width. The points marked (b) and (c) correspond to the cases depicted 
in figures 9(b)  and (c) respectively, where the flow is on the point of separating a t  the control 
section. The case shown in figyre 9 (d )  features separated flow a t  the control section, but is off the 
scale in the above diagram (D, = 18, Ac = 16). 

Non-separated flow at the control section 

In this case the flow variable is 6 and application of (3.3) to (5.13) gives 

( 1 - t:) d, + t: DC = 6;3 t,2, (9.6) 

which, by (7.5), corresponds to unit Froude number. This equation applies when 
6, 2 1 or, equivalently, whenever (9.2) is not satisfied. Note that (9.6) and (9.1) are 
identical when 6, = 1. An important consequence of (9.6) is that flow a t  the control 
section is unidirectional, i.e. fluid particles in the control section cannot originate 
from downstream. This is a necessary condition for the solution to be physically 
meaningful, but turns out to be always satisfied. The proof is in the appendix. 

The equations to be solved are (9.6) and (5.13), or (9.6) and the following equation 
obtained by adding 6, times (9.6) to (5.13) and dividing by 2B,: 

(9.7) A, = (1 - it,!) d, - #( 1 - t:) Dc - ( 2 g i  + t;Q) d;'. 
Together (9.6) and (9.7) constitute an algebraic equation of order eight for d, which 
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is difficult to solve explicitly. On the other hand, it is easy to construct solutions by 
regarding (9.6) and (9.7) as giving Brn and A, implicitly as functions of and t,. For 
instance, tables can be constructed of Brn and A, (and any derived quantities that may 
be wanted) as functions of D;' and t,, both these variables being confined to the range 
from zero to unity. Then Bm can be found as a function of A, and t,byinterpolation. 

10. Some limiting cases 
The wide-chamel limit (t, + 1) 

By (9.2), the flow in this limit is separated if Brn > 2, and then the solution isgiven 
by (9.5). If Bm < 2, the flow is not separated and so solutions of (9.6) and (9.7) are 
required for small E ,  where 

I n  this limit, (9.6) gives 
E = 1-tz 2: 4exp(-2wC). (10.1) 

B, = 1 + ~ ~ ( 2 - ~ , ) + ~ ~ ~ ~ ( 3 6 - 2 0 ~ , + 3 ~ ~ ) +  ..., (10.2) 

showing that the flow is always close to separation a t  the control section even when 
Brn < 2. When (10.2) is used in (9.7) the result is 

(10.3) 

The dependence of Bm on A, in the limit is shown in figure 7. Above the line Brn = 2, 
the flow is separated. The effective width we, at the control section is shown on the 
right and can be very much less than the actual width a t  the control section. Below 
the line Bm = 2, the flow is not separated, so (10.3), with E = 0, replaces (9.5). 

A description of the main features of the wide-channel controlled flow solutions can 
be obtained with the help of figure 7 and calculations of the flow properties far up- 
stream. I n  the upper left part of figure 7 (the region bounded by the broken line), it 
turns out that the flow is separated even at upstream infinity. In  the remainder of 
the figure, the upstream value Du of D can be calculated by putting A = 0 and t = 1 

I3; + iy = B: - 4pi. (10.4) 
in (5.13) to give 

The case Gi = 3 is a special one where the upstream flow is all contained in the left- 
hand boundary layer (so (10.4) gives the upstream value DtL + Dz1 of D+ as Bm). Then 

Bm-Ac = 2, (10.5) 
(9.5) gives the simple result 

i.e. the upstream interior surface level is two units above the floor of the channel at the 
control section (it will be convenient to call this the sill). By (4.16), the dimensional 

(10.6) 
form of this result is 

When Gi > 4, the upstream level is higher, as figure 7 shows. This case is interesting 
because the flow approaching the control section from far upstream is along the left 
bank (with flux + Gi), but a t  some point it separates and the unit flux which crosses 
the sill is in a stream against the right bank. The remaining flux is carried back towards 
upstream infinity in the right-hand boundary layer. 

o m -  A, = (2f&/~)'. 
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< Q, i.e. when the upstream flow is unidirectional, figure 7 shows that the 
flow at the control section is separated only when A, is large enough. The upstream 
level is nearly two units above the sill, and approaches the value given by (10.5) as 
A,-+co. For small Ac the flow does not separate and (10.3) is approximated by 

Ba % (2 + 4$$ +A,. 

When 

(10.7) 

When gi < - 9 ,  the upstream boundary-layer fluxes are in opposite directions, the 
right-hand layer containing the flux towards the sill. In  this case the upstream interior 
level can be well below the sill level, but is also below the surface levels on the boundaries. 

For cases where the channel is of large but finite width, the part of figure 7 in the 
region (9.2) is unaltered. Below this line, the curves are distorted slightly. The power 
series in 6 given by (10.2) and (10.3) are useful even when the width approaches values 
as small as the Rossby radius (we = 1 corresponds to e = 0.42). 

The narrow-channel limit ( t ,  --f 0 )  

In  this limit the flow is separated only for very large Ba, as given by (9.2). Equation 
(9.5) shows that Ba is close to A, unless is large, soitis more useful to consider the 
differences Ba -A, rather than Ba itself. Thus (9.5) gives approximately 

Ba-A, w 2+2$,Bi1  for Bat: > 1, (10.8) 

When (9.2) is not satisfied, the flow is governed by (9.6) and (9.7). If Bw 3- t,, the 
the last term being important only when 

former gives 

and substitution in (9.7) then gives 

is very large. 

D, = B,$t,P( 1 + it: - & B , q  . . .) (10.9) 

B a - - ~ ,  E 1Jj~t;++B;*t;5+2$~B,1 for B,tf < 1.  (10.10) 

As before, the last term is important only when 
dimensional version of (10.8) and (10.10) is 

is large. If is not large, the 

The narrow-channel limit applies when the width of the control section is small 
compared with the Rossby radius, i.e. when the potential vorticity f /Dm is small com- 
pared with g/fw:. Thus (10.11)  is the result in the limit as the potential vorticity tends 
to  zero. It is precisely the result obtained by Whitehead et al. [1974, equations (3.8) 
and (3.25)] for zero potential vorticity [they use the notation ha for the left-hand side 
of (10.1 l)]. For small f, this reduces to the result for a non-rotating fluid. 

2 - Q (10.11) gives the approximate solution for all A,. If gi < -4, however, 
there are some additional small t ,  solutions with Bm of order t,. These solutions will 
not be discussed. 

If 

11. The case qi = 4 
The most useful application of the results obtained is probably to flow out of a basin, 

the exit channel being assumed to satisfy the assumptions of the theory. For given 
geometry, the assumption of hydraulic control gives a relationship between the 
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FIGURE 8. Dependence of the non;dimensional flow rate Q* = 4 fQ/gD% = 2;a on geometry for 
hydraulically controlled flow when $, = +. The abscissa variable is t,, the hyperbolic tangent of the 
width of the control section divided by the Rossby radius (gD,)*/4f. The ordinate variable is the 
ratio of the height A, of the channel floor at  the control section to the upstream mid-channel 
depth D,. 

conditions a t  the upstream end of the exit channel. This relationship can then be 
used as a boundary condition for the basin flow. 

The behaviour of the system may depend not only on what processes are important 
in the basin (e.g. friction) but alsoon the way in which the flow is established. Consider, 
for instance, the following situation. Suppose that there is a large basin of constant 
depth with an exit channel of slowly varying width and depth. This basin is initially 
filled with inviscid fluid at rest held back by, say, a partition a t  the sill. What flow 
develops when this partition is removed ? 

One might expect the early stages to be something like the behaviour found for 
a flat-bottomed channel of constant width when there is a small discontinuity in level 
(Gill 1976). In  this case, waves move out from the discontinuity in level, the fastest 
ones having speed (gD)i .  After the waves have passed by, the outflow is found to be 
all along the left balik when the channel is wide compared with the Rossby radius. 
The associated depression in surface level is created by the passage upstream of a 
Kelvin wave, which can only move along this side of the channel. The next stage in the 
process would be an adjustment produced by advection of upstream potential vorticity 
along the left bank by the current. This would presumably lead eventually to a steady 
flow of the type studied in this paper with $i = +, corresponding to the flow upstream 
being entirely along the left bank. 

A feature of this flow (assuming that the basin is large enough) is that the upstream 
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interior level D,, and hence the upstream potential vorticity, remains a t  its initial 
value. The problem, therefore, is to find how the flux Q depends on the height A, of 
the sill and on the width w, of the control section. The results (obtained as described 
in $ 9) are shown in figure 8 as contours of the non-dimensional flux 

Q* = +fQ/gD% = B i z  
defined by (4.19). This is shown as a function of t,, the hyperbolic tangent of the width 
(in units of the Rossby radius), and of 

A,* = A,lfs,, 

the ratio of the sill height to the upstream interior depth. 
The results shown in figure 8 have quite straightforward properties. For instance, 

the flux tends to zero as the width of the control section tends to zero. The flux increases 
with increasing width and decreasing sill height, the largest possible value being 
&gD$/f, for zero sill height and infinite width. When the channel is wide enough, or the 
sill is high enough, the flow at the control section is separated from the left bank. In  
these circumstances, changes in width do not affect the flux so &* depends only on A:. 
This dependence is given by (10.5). 

12. Some sample surface configurations 
To give an idea of the variety of solutions possible, a sample set of surface configura- 

tions is depicted in figure 9. The first three diagrams are for the same geometry, with 
a relatively low siIl. It is convenient to discuss these diagrams in terms of dimensional 
variables because the scales introduced in $ 4  are not fixed for a fixed geometry. 

The width w is taken to vary with downstream distance y according to the formula 

wlw, = 1 + y2, (12.1) 

wC being the width at the narrowest section. The exact form of this dependence is 
immaterial as y enters the problem only parametrically. (In other words, it is the profile 
dependence on w that matters, not the profile dependence on y . )  In the low-sill cases the 
height A of the channel floor is given by 

A = 0*25d,( 1 +$)-l, 

while in the high-sill cases the formula is 

A = 4.0dw(l +y2)-l ,  

where dw = (4fw,)2/ls. 

(12.2) 

(12.3) 

(12.4) 

Case ( a )  is an example where the upstream depth Dm is fairly large, giving a large 
Rossby radius. Hence the narrow-channel approximation is appropriate. The value 
oft, is, in fact, 0.4, which is not small enough to make (10.11) very accurate, but it 
gives the flux to within 20%. The actual value of the flux is 4*8qw, where 

pW = (&J@)~w&. (12.5) 

The term involving f on the right-hand side of (10.11) is fairly small, indicating that 
rotation is having little influence on the flow rate. It does, however, give quite a large 
tilt to the surface, and separation occurs quite soon after the control section. 
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FIGURE 9. Solutions showing the surface configuration for controlled flow in a channel whose 
width ZL' varies parabolically with downstream distance y (positive out of the page). There are two 
different geometries. Cases (a)-(c) correspond to a low sill, the height A of the channel floor being 
given by A = 0.25d,,(l +y*)-l, where d,. is given by (12.2). Cases (d )  and ( e )  correspond to a big> 
sill, wjtli A given by A = 4.0du,( 1 +y2)-l. The floz is deteryined by the upstream parameters pi 
and D,, which have the following values: (a) $i = 0.5,  D,  = 2;;6 (D,  =*5.6dW), ( b )  $< = -0.5, 
8 = 2.26 ( D  m = 0.5d , , ) ,  (c) q1 = 3 , 8 ,  = 3.8 (D ,  = Z-ld,), (d )  $i  = 0.5,  D ,  = 18 (D,  = 4.5d,,), 
( e )  $j = - 1, 5, = 0.33 (D,  = 0.46dW). 

Each figure shows the- surface profiles at y = - 2.0, - 1.8, .  . ., 0.8, 1.0. The vertical lines at the 
edges go from the free surface to the reference level, which is the level of the channel floor at 
y = - 00. The level of the floor at other points is shown by a continuous line intersecting the vertical 
lines at the appropriate heights. I n  all cases, the surface intersects the channel floor for y > y8, 
where ys < 0 (separated flow at the control section) for case (d),  yJ = 0 for cases (b )  and (c),  and 
ps > 0 for cases (a )  and ( e ) .  In  case (c), sepa,rated flow occurs upstream of the control section as well. 

A 
m 
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The fact that ys > 0 for case ( e )  is not obvious from the diagram because linear interpolation is used 
to connect the sections and the separation point lies between y = 0 and y = 0.2. Two different 
degrees of vertical exaggeration are used in the drawings. Taking the unit of width to be the 
width of the channel at  the narrowest section, the unit of height is 3d, in cases (a)-(c)  and 6d, in 
cases (d )  a.nd ( e ) .  
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In cases ( b )  and (c), separation occurs a t  the control section itself, so these examples 
may be identified with points in figure 7. In  case ( b ) ,  the upstream level is low, giving 
a small Rossby radius, and hence the wide-channel approximation is appropriate 
(t, = 0.9). The flow is very sluggish and the flux is only 1% of the value for case (a) .  
Case (c) is rather different because of the circulation upstream of the sill. The flux in 
the left-hand layer towards the sill is equal to I-Oq,, of which only 30% crosses the 
sill, the remaining 70:/, returning in the right-hand layer. 

The high-sill examples are shown in figures 9(d) and ( e ) .  In case ( d ) ,  the upstream 
level is high, being only 20% less than in case (a )  (t, = 0.44). Separation occurs up- 
stream of the control section and so corresponds to a point in the upper part of figure 7. 
The flux O.O69q, is much smaller than in case (a)  because of the higher sill. It would be 
more appropriate to say, in fact, that the stream barely manages to cross the sill. 

Case ( e )  is another example where there is a circulation upstream of the sill, but 
in the opposite sense to that in case (c). The upstream level is low (as in case ( b ) ) ,  making 
the wide-channel approximation applicable ( t ,  = 0.9), and so a point in figure 7 can be 
identified approximately with this solution. The elevation of the surface at  the walls 
testifies to a large flux. The right-hand layer carries a flux of 2-9gW towards the sill, of 
which 2-09,,, crosses the sill and the remainder returns in the left-hand layer. The large 
flux in the approaching stream is necessary to carry fluid across the sill because the 
general upstream level is well below (about 12%) that of the sill. Note that the surface 
is concave upwards even a t  the constriction. Separation does not occur at the con- 
striction itself, but does happen soon afterwards. 

1 3. Discussion 
The foregoing analysis leads to a family of steady solutions satisfying certain 

assumptions. It does not give information about how such a flow might be set up, or 
indeed whether a flow satisfying these assumptions would ever be set up from given 
initial conditions. However, one can make reasonable inferences about the two types 
of problem usually treated in the non-rotating case, namely (a) ,  given an initial 
upstream level, what will be the discharge rate and ( b ) ,  given the rate of supply of fluid 
to a reservoir, what will be its upstream level? The former problem was discussed in 
3 11.  The latter problem appears a t  first sight to be unresolved since, for any specified 
outflow, there is a whole family of controlled solutions corresponding to the different 
values of $i. This arises, however, because the upstream flow is divided between two 
boundary layers which are independent of each other. Hence it is permissible to  specify 
the flux in each of these boundary layers independently. For instance, one could have 
a large reservoir of constant depth (to give uniform potential vorticity) and then 
establish currents in both boundary layers by some sort of forcing. This could be 
achieved, for instance, by a wind stress parallel to the boundary. The associated 
Ekman flux raises or lowers the surface level a t  the boundary and thereby establishes 
a boundary current (cf. Gill & Clarke 1974). 

The above argument seems reasonable if the forcing is such as to produce boundary 
currents. However, if a source is specified in the interior of a basin (e.g. as a model of 
bottom water formation giving rise to a source of deep water as in the Greenland &a), 
the problem has a different character. When fluid is introduced into a rotating system, 
it behaves quite differently from the non-rotating case because fluid particles tend to 
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move no more than a Rossby radius from their initial position. Thus the fluid remains 
confined to a dome-shaped region with motion following contours of fluid depth. If the 
fluid is inviscid, outflow from the basin will not, occur until the dome has become so 
large that its effective Rossby radius is comparable with the basin width and the 
skirts of the dome reach the exit channel. I n  practice, however, friction will modify 
the flow and tend to spread out the dome. In  this case, it may be possible to find a solu- 
tion where friction is important in the basin, but not in the immediate neighbourhood 
of the sill, where hydraulic control takes place. 

l'he results of this paper are identical with those of Whitehead et al. (1974) in the 
limit of zero potential vorticity , and their use of a maximization principle to determine 
the hydraulically controlled flow is supported by the conclusions reached above. The 
maximization principle corresponds, in fact, to an application of (3.3).  They write 
their flow equation in the form 

Q = G(h,w, ...; D), (13.1) 

where Q is the flow rate and their choice of flow variable D is the variable they call h,. 
So, taking f = Q - G, (3.3) gives aG/aD = 0, which is the principle they used. Stern's 
(1974, 1976) method is yet another form, where Q in (13.1) is replaced by the width 
of the constriction, The experiments of Whitehead et al. (1974) were in good agreement 
with the theory despite the experimental arrangement, which involved sudden changes 
in width and depth at the entrance to their channel. Experiments have also been 
reported by Sambuco & Whitehead (1976), but their geometry did not satisfy the 
assumptions of the theory. 

These results show the feasibility and usefulness of laboratory experiments in 
studying hydraulically controlled flows, and this paper indicates that there is a wide 
range of flow regimes yet to be explored. 

There seem to be a number of sills in the ocean where hydraulic control concepts are 
applicable. The main point of the theory is that it selects that  solution for which the 
flow upstream of the control is fundamentally different from that downstream of the 
control (i.e. control is a t  a change of branch). The observed situation shown in figure 1 
obviously has this character, and estimates of the Froude number by Stalcup, Metcalf 
& Johnson (1975) support the idea of hydraulic control. Similar arguments apply to 
flow through the Denmark Straits, which was discussed by Whitehead et al. (1974). 
Therefore the outstanding issues concern not whether hydraulic control is taking place, 
but how the solution is affected by the stratification and local topography, and how it is 
related to the upstream flow. For instance, what determines the upstream potential 
vorticity and what determines the way the flow is subdivided between the two up- 
stream boundary layers T How much do mixing and friction affect the solution! When 
do features like hydraulic jumps occur T There are also interesting questions about the 
nature of the flow downstream of the control. This problem has been studied by Smith 
(1975) in connexion with the overflow from the Norwegian Sea and from the 
Mediterranean. 

The analysis carried out in this paper was limited to determining the effect of 
geometry and upstream conditions on the nature of the flow. The range of solutions 
obtained was somewhat restricted by the assumptions of uniform potential vorticity 
and of rectangular cross-sections, but was sufficiently wide to give an interesting 
variety of behaviour, as is evident from figure 9. 
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The methods used are capable of a great deal of generalization, as some exploratory 
investigations have shown. For instance, the choice of a rectangular cross-section was 
merely one of convenience, and it is not difficult to treat other shapes of channel floor. 
It is not even necessary to have a channel with two sides, as hydraulic control can be 
induced in a boundary current by topographic effects which may be localized to the 
boundary region. This gives an indication of how coastal currents in the ocean, for 
instance, can be affected by changes in the cross-sectional shape of the continental 
shelves. For such applications, the one-layer model is rather unrealistic, but it is 
straightforward to generalize the methods to two or more layers. The assumption of 
constant potential vorticity can also restrict appicability to real situations. However 
this can be overcome by models with piecewise constant potential vorticity. The 
feature of the analysis which would not be easy to change is the slowly varying 
assumption, because this allows flow profiles a t  different sections to be calculated 
independently. This eliminated dependence on position in the cross-section from 
the problem, so leading to equations involving only downstream distance and time. 

I should like to thank Mr Julian Smith for computing solutions and producing the 
computer drawings displayed in figure 9. 

Appendix 
I n  $ 9  it was stated that flow in the control section is always unidirectional. The 

proof of this statement for the non-separated case will now be given. By 8 7, a necessary 
and sufficient condition for unidirectional flow is that Irl < 1.  The proof that this 
condition is satisfied a t  the control section follows in two stages. 

(a )  Proof that r 2 - 1.  Using (9.6) to substitute for Bw in the expression (7.6) for r ,  
one obtains at the control section 

since Dc 2 1 for a non-separated flow. 
( b )  Proof that r < 1 

since (9.6) requires Dctc < 1 in order for Brn to be positive. 
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